LAB 6: A Register
Synopsis
When an exposure time is selected by the user it has to be stored. Edge-triggered Flip-Flops are used for this purpose. The contents of the register are updated only with the rising edge of the clock signal. This way, differences in the path delay become irrelevant as long as the maximum delay is shorter than the clock period.
In addition to the clock signal a second enabling condition is needed in this case. Valid exposure times shall be stored until another exposure time is selected. Only legal button combinations are mapped to display values other than (0,0,0) by the decoder, i.e. it is sufficient to exclude this value triple from being stored.
The reset input signal is necessary to be able to bring the chip into a defined state, e.g. after power-up.
The complete interface of the register is shown in the following figure:
Behaviour
The reset shall be implemented asynchronously, i.e. a process with sensitivity list is the only viable option in this case. The following template for clocked processes has to be used:
if RESET ... elsif RISING_CLOCK_EDGE ...
After a rising clock edge has been detected it must be checked whether a key was pressed. If yes, the new exposure time is stored in the register.
Data types
The exposure latch is used to store the exposure time, i.e. T_DIGITS is the appropriate type for the data signals. CLK and RESET are single bit control signals and shall therefore be of type std_ulogic.
To do
- Write a new file with the VHDL description of the exposure latch.
- Write a testbench to verify the design. The periodic clock signal generation should be placed in a separate stimuli process!
- Compile and simulate the design.
- Synthesize the module.
Implementation
- EXP_FF.VHD
library ieee; use ieee.std_logic_1164.all; entity EXP_FF is port(CLK : in std_ulogic; RESET : in std_ulogic; KEY : in T_DIGITS; EXP_TIME : out T_DIGITS); end EXP_FF; architecture RTL of EXP_FF is begin process(CLK) begin if (RESET = '1') then -- Assign a default value elsif (CLK'event and CLK = '1') then -- Check for new input values end if; end process; end RTL;
Testbench
- TB_EXP_FF.VHD
library ieee; USE std.textio.ALL; use ieee.std_logic_1164.all; use work.P_DISPLAY.all; entity TB_EXP_FF is end TB_EXP_FF; architecture TEST of TB_EXP_FF is component EXP_FF port(CLK : in std_ulogic; RESET : in std_ulogic; KEY : in T_DIGITS; EXP_TIME : out T_DIGITS); end component; signal W_CLK : std_ulogic := '0'; signal W_RESET : std_ulogic; signal W_KEY : T_DIGITS; signal W_EXP_TIME : T_DIGITS; begin DUT : EXP_FF port map( CLK => W_CLK, RESET => W_RESET, KEY => W_KEY, EXP_TIME => W_EXP_TIME); W_CLK <= not W_CLK after 10 ns; STIMULI : process begin W_KEY <= (0,0,0); W_RESET <= '1'; -- EXP_TIME = (0,0,1) wait for 5 ns; W_RESET <= '0'; -- no changes (all 0 shall be ignored) wait for 15 ns; W_KEY <= (1,2,3); -- no changes (no active clock edge) wait for 5 ns; W_KEY <= (2,2,3); -- EXP_TIME = (2,2,3) wait for 15 ns; W_KEY <= (0,3,5); -- EXP_TIME = (0,3,5) wait for 5 ns; assert false report "End of stimuli reached" severity failure; end process STIMULI; SAMPLE : process(W_EXP_TIME) constant SPACE : string := " "; variable FILE_LINE : line; FILE OUT_FILE : text IS OUT "lab_6.trace"; begin write(FILE_LINE, W_EXP_TIME(2)); write(FILE_LINE, SPACE); write(FILE_LINE, W_EXP_TIME(1)); write(FILE_LINE, SPACE); write(FILE_LINE, W_EXP_TIME(0)); writeline(OUT_FILE, FILE_LINE); end process SAMPLE; end TEST; configuration CFG_TB_EXP_FF of TB_EXP_FF is for TEST end for; end CFG_TB_EXP_FF;
Package
LAB 4, 5, 6, 7, 8, 9, 10, 11
- P_DISPLAY.VHD
library ieee; use ieee.std_logic_1164.all; package P_DISPLAY is type T_DIGITS is array (2 downto 0) of integer range 0 to 10; type T_DISPLAY is array (2 downto 0) of std_ulogic_vector(6 downto 0); constant SEG_0 : std_ulogic_vector(6 downto 0):= "0111111"; constant SEG_1 : std_ulogic_vector(6 downto 0):= "0000011"; constant SEG_2 : std_ulogic_vector(6 downto 0):= "1101101"; constant SEG_3 : std_ulogic_vector(6 downto 0):= "1100111"; constant SEG_4 : std_ulogic_vector(6 downto 0):= "1010011"; constant SEG_5 : std_ulogic_vector(6 downto 0):= "1110110"; constant SEG_6 : std_ulogic_vector(6 downto 0):= "1111110"; constant SEG_7 : std_ulogic_vector(6 downto 0):= "0100011"; constant SEG_8 : std_ulogic_vector(6 downto 0):= "1111111"; constant SEG_9 : std_ulogic_vector(6 downto 0):= "1110111"; constant SEG_E : std_ulogic_vector(6 downto 0):= "1111100"; -- pragma translate_off procedure DISPLAY_DIGIT(signal DISPLAY:T_DISPLAY); -- pragma translate_on end P_DISPLAY; -- pragma translate_off use std.textio.all; package body P_DISPLAY is ------------------------------ -- -- 111111111112222 -- 123456789012345678901234 -- 1 #5## #### #### -- 2 # # # # # # -- 3 4 0 # # # # -- 4 # # # # # # -- 5 #6## #### #### -- 6 # # # # # # -- 7 3 1 # # # # -- 8 # # # # # # -- 9 #2## #### #### -- ------------------------------ constant ACTIVE_SEG: character := '#'; constant EMPTY_SEG: character := ' '; -- Width and height of a digit constant WIDTH: integer := 8; constant HEIGHT: integer := 9; -- Datatypes to store the complete display in a matrix subtype T_MATRIX_ROW is bit_vector (1 to 3*WIDTH); type T_DISP_MATRIX is array (1 to HEIGHT) of T_MATRIX_ROW; -- Definition of the appearance of the 6 segments subtype T_DIGIT_ROW is bit_vector(1 to WIDTH); type T_SEG_DEF is array (1 to HEIGHT) of T_DIGIT_ROW; type T_DIGIT_DEF is array (0 to 6) of T_SEG_DEF; constant DIGIT_DEF: T_DIGIT_DEF :=(("00000000", -- .... "00000010", -- . # "00000010", -- . 0 "00000010", -- . # "00000000", -- .... "00000000", -- . . "00000000", -- . . "00000000", -- . . "00000000"),-- .... ("00000000", -- .... "00000000", -- . . "00000000", -- . . "00000000", -- . . "00000000", -- .... "00000010", -- . # "00000010", -- . 1 "00000010", -- . # "00000000"),-- .... ("00000000", -- .... "00000000", -- . . "00000000", -- . . "00000000", -- . . "00000000", -- .... "00000000", -- . . "00000000", -- . . "00000000", -- . . "00111100"),-- #2## ("00000000", -- .... "00000000", -- . . "00000000", -- . . "00000000", -- . . "00000000", -- .... "01000000", -- # . "01000000", -- 3 . "01000000", -- # . "00000000"),-- .... ("00000000", -- .... "01000000", -- # . "01000000", -- 4 . "01000000", -- # . "00000000", -- .... "00000000", -- . . "00000000", -- . . "00000000", -- . . "00000000"),-- .... ("00111100", -- #5## "00000000", -- . . "00000000", -- . . "00000000", -- . . "00000000", -- .... "00000000", -- . . "00000000", -- . . "00000000", -- . . "00000000"),-- .... ("00000000", -- .... "00000000", -- . . "00000000", -- . . "00000000", -- . . "00111100", -- #6## "00000000", -- . . "00000000", -- . . "00000000", -- . . "00000000"));-- .... procedure DISPLAY_DIGIT(signal DISPLAY:T_DISPLAY) is file OUTFILE : TEXT is out "display.txt"; variable L : line; variable DISP_TEXT: string(T_MATRIX_ROW'range); variable DISP_MATRIX: T_DISP_MATRIX; variable COL_L: integer; variable COL_R: integer; begin -- Clear the display DISP_MATRIX := (others => (others => '0')); -- Loop over all digits for DIGIT in T_DISPLAY'range loop -- Calculate the left- and rightmost columns COL_L := DIGIT*WIDTH + 1; COL_R := DIGIT*WIDTH + WIDTH; -- Loop over all segments for SEGMENT in 0 to 6 loop if DISPLAY(DIGIT)(SEGMENT) = '1' then -- Copy the matrix to the final display -- Loop over all rows of the display for ROW in T_SEG_DEF'range loop DISP_MATRIX(ROW)(COL_L to COL_R) := DISP_MATRIX(ROW)(COL_L to COL_R) or DIGIT_DEF(SEGMENT)(ROW); end loop; end if; end loop; end loop; -- Write the matrix to a textfile for I in T_DISP_MATRIX'range loop -- Start with an empty line DISP_TEXT := (others => EMPTY_SEG); for J in T_MATRIX_ROW'range loop if DISP_MATRIX(I)(J) = '1' then DISP_TEXT(J) := ACTIVE_SEG; end if; end loop; -- Write the line write(L, DISP_TEXT); writeline(OUTFILE, L); end loop; end DISPLAY_DIGIT; end P_DISPLAY; -- pragma translate_on